Build regression model from a set of candidate predictor variables by removing predictors based on akaike information criterion, in a stepwise manner until there is no variable left to remove any more.

blr_step_aic_backward(model, details = FALSE, ...)

# S3 method for default
blr_step_aic_backward(model, details = FALSE, ...)

# S3 method for blr_step_aic_backward
plot(x, text_size = 3, ...)

Arguments

model

An object of class glm; the model should include all candidate predictor variables.

details

Logical; if TRUE, will print the regression result at each step.

...

Other arguments.

x

An object of class blr_step_aic_backward.

text_size

size of the text in the plot.

Value

blr_step_aic_backward returns an object of class "blr_step_aic_backward". An object of class "blr_step_aic_backward" is a list containing the following components:

model

model with the least AIC; an object of class glm

candidates

candidate predictor variables

steps

total number of steps

predictors

variables removed from the model

aics

akaike information criteria

bics

bayesian information criteria

devs

deviances

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See also

Examples

# NOT RUN {
model <- glm(honcomp ~ female + read + science + math + prog + socst,
data = hsb2, family = binomial(link = 'logit'))

# elimination summary
blr_step_aic_backward(model)

# print details of each step
blr_step_aic_backward(model, details = TRUE)

# plot
plot(blr_step_aic_backward(model))

# final model
k <- blr_step_aic_backward(model)
k$model

# }