Build regression model from a set of candidate predictor variables by removing predictors based on p values, in a stepwise manner until there is no variable left to remove any more.
Usage
blr_step_p_backward(model, ...)
# Default S3 method
blr_step_p_backward(model, prem = 0.3, details = FALSE, ...)
# S3 method for class 'blr_step_p_backward'
plot(x, model = NA, print_plot = TRUE, ...)
Arguments
- model
An object of class
lm
; the model should include all candidate predictor variables.- ...
Other inputs.
- prem
p value; variables with p more than
prem
will be removed from the model.- details
Logical; if
TRUE
, will print the regression result at each step.- x
An object of class
blr_step_p_backward
.- print_plot
logical; if
TRUE
, prints the plot else returns a plot object.
Value
blr_step_p_backward
returns an object of class "blr_step_p_backward"
.
An object of class "blr_step_p_backward"
is a list containing the
following components:
- model
model with the least AIC; an object of class
glm
- steps
total number of steps
- removed
variables removed from the model
- aic
akaike information criteria
- bic
bayesian information criteria
- dev
deviance
- indvar
predictors
References
Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.
See also
Other variable selection procedures:
blr_step_aic_backward()
,
blr_step_aic_both()
,
blr_step_aic_forward()
,
blr_step_p_forward()
Examples
if (FALSE) { # \dontrun{
# stepwise backward regression
model <- glm(honcomp ~ female + read + science + math + prog + socst,
data = hsb2, family = binomial(link = 'logit'))
blr_step_p_backward(model)
# stepwise backward regression plot
model <- glm(honcomp ~ female + read + science + math + prog + socst,
data = hsb2, family = binomial(link = 'logit'))
k <- blr_step_p_backward(model)
plot(k)
# final model
k$model
} # }