Skip to contents

Measures of model fit statistics for multiple models.

Usage

blr_multi_model_fit_stats(model, ...)

# Default S3 method
blr_multi_model_fit_stats(model, ...)

Arguments

model

An object of class glm.

...

Objects of class glm.

Value

A tibble.

Examples

model <- glm(honcomp ~ female + read + science, data = hsb2,
family = binomial(link = 'logit'))

model2 <- glm(honcomp ~ female + read + math, data = hsb2,
family = binomial(link = 'logit'))

blr_multi_model_fit_stats(model, model2)
#>                                Measures  Model 1  Model 2
#> loglik_null      Log-Lik Intercept Only -115.644 -115.644
#> loglik_model         Log-Lik Full Model  -80.118  -75.210
#> m_deviance                     Deviance  160.236  150.420
#> lr_ratio                             LR   71.052   80.869
#> lr_pval                       Prob > LR    0.000    0.000
#> mcfadden                  MCFadden's R2    0.307    0.350
#> adj_mcfadden          McFadden's Adj R2    0.273    0.315
#> m_aic                 ML (Cox-Snell) R2  168.236  158.420
#> cox_snell    Cragg-Uhler(Nagelkerke) R2    0.299    0.333
#> m_bic           McKelvey & Zavoina's R2  181.430  171.613
#> mckelvey                     Efron's R2    0.518    0.523
#> effron                         Count R2    0.330    0.379
#> nagelkerke                 Adj Count R2    0.436    0.485
#> count_r2                            AIC    0.810    0.830
#> count_adj                           BIC    0.283    0.358