Confusion matrix and statistics.
Usage
blr_confusion_matrix(model, cutoff = 0.5, data = NULL, ...)
# Default S3 method
blr_confusion_matrix(model, cutoff = 0.5, data = NULL, ...)
See also
Other model validation techniques:
blr_decile_capture_rate()
,
blr_decile_lift_chart()
,
blr_gains_table()
,
blr_gini_index()
,
blr_ks_chart()
,
blr_lorenz_curve()
,
blr_roc_curve()
,
blr_test_hosmer_lemeshow()
Examples
model <- glm(honcomp ~ female + read + science, data = hsb2,
family = binomial(link = 'logit'))
blr_confusion_matrix(model, cutoff = 0.4)
#> Confusion Matrix and Statistics
#>
#> Reference
#> Prediction 0 1
#> 0 125 16
#> 1 22 37
#>
#>
#> Accuracy : 0.8100
#> No Information Rate : 0.7350
#>
#> Kappa : 0.5293
#>
#> McNemars's Test P-Value : 0.4173
#>
#> Sensitivity : 0.6981
#> Specificity : 0.8503
#> Pos Pred Value : 0.6271
#> Neg Pred Value : 0.8865
#> Prevalence : 0.2650
#> Detection Rate : 0.1850
#> Detection Prevalence : 0.2950
#> Balanced Accuracy : 0.7742
#> Precision : 0.6271
#> Recall : 0.6981
#>
#> 'Positive' Class : 1