Compute sensitivity, specificity, accuracy and KS statistics to generate the lift chart and the KS chart.
Usage
blr_gains_table(model, data = NULL)
# S3 method for class 'blr_gains_table'
plot(
x,
title = "Lift Chart",
xaxis_title = "% Population",
yaxis_title = "% Cumulative 1s",
diag_line_col = "red",
lift_curve_col = "blue",
plot_title_justify = 0.5,
print_plot = TRUE,
...
)
Arguments
- model
An object of class
glm
.- data
A
tibble
or adata.frame
.- x
An object of class
blr_gains_table
.- title
Plot title.
- xaxis_title
X axis title.
- yaxis_title
Y axis title.
- diag_line_col
Diagonal line color.
- lift_curve_col
Color of the lift curve.
- plot_title_justify
Horizontal justification on the plot title.
- print_plot
logical; if
TRUE
, prints the plot else returns a plot object.- ...
Other inputs.
References
Agresti, A. (2007), An Introduction to Categorical Data Analysis, Second Edition, New York: John Wiley & Sons.
Agresti, A. (2013), Categorical Data Analysis, Third Edition, New York: John Wiley & Sons.
Thomas LC (2009): Consumer Credit Models: Pricing, Profit, and Portfolio. Oxford, Oxford Uni-versity Press.
Sobehart J, Keenan S, Stein R (2000): Benchmarking Quantitative Default Risk Models: A Validation Methodology, Moody’s Investors Service.
See also
Other model validation techniques:
blr_confusion_matrix()
,
blr_decile_capture_rate()
,
blr_decile_lift_chart()
,
blr_gini_index()
,
blr_ks_chart()
,
blr_lorenz_curve()
,
blr_roc_curve()
,
blr_test_hosmer_lemeshow()
Examples
model <- glm(honcomp ~ female + read + science, data = hsb2,
family = binomial(link = 'logit'))
# gains table
blr_gains_table(model)
#> decile total 1 0 ks tp tn fp fn sensitivity specificity accuracy
#> 1 1 20 14 6 22.33346 14 141 6 39 26.41509 95.91837 77.5
#> 2 2 20 13 7 42.09986 27 134 13 26 50.94340 91.15646 80.5
#> 3 3 20 10 10 54.16506 37 124 23 16 69.81132 84.35374 80.5
#> 4 4 20 7 13 58.52907 44 111 36 9 83.01887 75.51020 77.5
#> 5 5 20 3 17 52.62482 47 94 53 6 88.67925 63.94558 70.5
#> 6 6 20 3 17 46.72058 50 77 70 3 94.33962 52.38095 63.5
#> 7 7 20 1 19 35.68220 51 58 89 2 96.22642 39.45578 54.5
#> 8 8 20 2 18 27.21088 53 40 107 0 100.00000 27.21088 46.5
#> 9 9 20 0 20 13.60544 53 20 127 0 100.00000 13.60544 36.5
#> 10 10 20 0 20 0.00000 53 0 147 0 100.00000 0.00000 26.5
# lift chart
k <- blr_gains_table(model)
plot(k)