Panel of plots to detect influential observations using DFBETAs.
Value
list; blr_dfbetas_panel
returns a list of tibbles (for
intercept and each predictor) with the observation number and DFBETA of
observations that exceed the threshold for classifying an observation as an
outlier/influential observation.
Details
DFBETA measures the difference in each parameter estimate with and without the influential point. There is a DFBETA for each data point i.e if there are n observations and k variables, there will be \(n * k\) DFBETAs. In general, large values of DFBETAS indicate observations that are influential in estimating a given parameter. Belsley, Kuh, and Welsch recommend 2 as a general cutoff value to indicate influential observations and \(2/\sqrt(n)\) as a size-adjusted cutoff.